1345 lines
38 KiB
C
1345 lines
38 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* Sometimes it's necessary to define __LITTLE_ENDIAN explicitly
|
|
but these catch some common cases. */
|
|
|
|
#if defined(_M_IX86) || defined(__i386__) || defined(_M_X64) || defined(__x86_64__) || defined(_M_ARM64) || defined(__aarch64__) || defined(_M_ARM) || defined(__arm__) || defined(__wasm__) || defined(__EMSCRIPTEN__)
|
|
#define __LITTLE_ENDIAN
|
|
#endif
|
|
|
|
typedef union {
|
|
double d;
|
|
int i[2];
|
|
} fdlibm_bits;
|
|
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define __HI(x) (((fdlibm_bits*)&(x))->i[1])
|
|
#define __LO(x) (((fdlibm_bits*)&(x))->i[0])
|
|
#else
|
|
#define __HI(x) (((fdlibm_bits*)&(x))->i[0])
|
|
#define __LO(x) (((fdlibm_bits*)&(x))->i[1])
|
|
#endif
|
|
|
|
/*
|
|
* set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
|
|
* (one may replace the following line by "#include <values.h>")
|
|
*/
|
|
|
|
double fdlibm_copysign(double x, double y)
|
|
{
|
|
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
|
|
return x;
|
|
}
|
|
|
|
double fdlibm_fabs(double x)
|
|
{
|
|
__HI(x) &= 0x7fffffff;
|
|
return x;
|
|
}
|
|
|
|
double fdlibm_scalbn(double x, int n)
|
|
{
|
|
static const double
|
|
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
|
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
|
huge = 1.0e+300,
|
|
tiny = 1.0e-300;
|
|
|
|
int k,hx,lx;
|
|
hx = __HI(x);
|
|
lx = __LO(x);
|
|
k = (hx&0x7ff00000)>>20; /* extract exponent */
|
|
if (k==0) { /* 0 or subnormal x */
|
|
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
|
|
x *= two54;
|
|
hx = __HI(x);
|
|
k = ((hx&0x7ff00000)>>20) - 54;
|
|
if (n< -50000) return tiny*x; /*underflow*/
|
|
}
|
|
if (k==0x7ff) return x+x; /* NaN or Inf */
|
|
k = k+n;
|
|
if (k > 0x7fe) return huge*fdlibm_copysign(huge,x); /* overflow */
|
|
if (k > 0) /* normal result */
|
|
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
|
|
if (k <= -54) {
|
|
if (n > 50000) /* in case integer overflow in n+k */
|
|
return huge*fdlibm_copysign(huge,x); /*overflow*/
|
|
else return tiny*fdlibm_copysign(tiny,x); /*underflow*/
|
|
}
|
|
k += 54; /* subnormal result */
|
|
__HI(x) = (hx&0x800fffff)|(k<<20);
|
|
return x*twom54;
|
|
}
|
|
|
|
double fdlibm_floor(double x)
|
|
{
|
|
static const double huge = 1.0e300;
|
|
|
|
int i0,i1,j0;
|
|
unsigned i,j;
|
|
i0 = __HI(x);
|
|
i1 = __LO(x);
|
|
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
|
if(j0<20) {
|
|
if(j0<0) { /* raise inexact if x != 0 */
|
|
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
|
if(i0>=0) {i0=i1=0;}
|
|
else if(((i0&0x7fffffff)|i1)!=0)
|
|
{ i0=0xbff00000;i1=0;}
|
|
}
|
|
} else {
|
|
i = (0x000fffff)>>j0;
|
|
if(((i0&i)|i1)==0) return x; /* x is integral */
|
|
if(huge+x>0.0) { /* raise inexact flag */
|
|
if(i0<0) i0 += (0x00100000)>>j0;
|
|
i0 &= (~i); i1=0;
|
|
}
|
|
}
|
|
} else if (j0>51) {
|
|
if(j0==0x400) return x+x; /* inf or NaN */
|
|
else return x; /* x is integral */
|
|
} else {
|
|
i = ((unsigned)(0xffffffff))>>(j0-20);
|
|
if((i1&i)==0) return x; /* x is integral */
|
|
if(huge+x>0.0) { /* raise inexact flag */
|
|
if(i0<0) {
|
|
if(j0==20) i0+=1;
|
|
else {
|
|
j = i1+(1<<(52-j0));
|
|
if(j<(unsigned)i1) i0 +=1 ; /* got a carry */
|
|
i1=j;
|
|
}
|
|
}
|
|
i1 &= (~i);
|
|
}
|
|
}
|
|
__HI(x) = i0;
|
|
__LO(x) = i1;
|
|
return x;
|
|
}
|
|
|
|
double fdlibm_frexp(double x, int *eptr)
|
|
{
|
|
static const double
|
|
two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
|
|
|
|
int hx, ix, lx;
|
|
hx = __HI(x);
|
|
ix = 0x7fffffff&hx;
|
|
lx = __LO(x);
|
|
*eptr = 0;
|
|
if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */
|
|
if (ix<0x00100000) { /* subnormal */
|
|
x *= two54;
|
|
hx = __HI(x);
|
|
ix = hx&0x7fffffff;
|
|
*eptr = -54;
|
|
}
|
|
*eptr += (ix>>20)-1022;
|
|
hx = (hx&0x800fffff)|0x3fe00000;
|
|
__HI(x) = hx;
|
|
return x;
|
|
}
|
|
|
|
double fdlibm_atan(double x)
|
|
{
|
|
|
|
static const double atanhi[] = {
|
|
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
|
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
|
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
|
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
|
};
|
|
|
|
static const double atanlo[] = {
|
|
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
|
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
|
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
|
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
|
};
|
|
|
|
static const double aT[] = {
|
|
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
|
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
|
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
|
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
|
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
|
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
|
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
|
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
|
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
|
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
|
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
|
};
|
|
|
|
static const double
|
|
one = 1.0,
|
|
huge = 1.0e300;
|
|
|
|
double w,s1,s2,z;
|
|
int ix,hx,id;
|
|
|
|
hx = __HI(x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x44100000) { /* if |x| >= 2^66 */
|
|
if(ix>0x7ff00000||
|
|
(ix==0x7ff00000&&(__LO(x)!=0)))
|
|
return x+x; /* NaN */
|
|
if(hx>0) return atanhi[3]+atanlo[3];
|
|
else return -atanhi[3]-atanlo[3];
|
|
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
|
if (ix < 0x3e200000) { /* |x| < 2^-29 */
|
|
if(huge+x>one) return x; /* raise inexact */
|
|
}
|
|
id = -1;
|
|
} else {
|
|
x = fdlibm_fabs(x);
|
|
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
|
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
|
id = 0; x = (2.0*x-one)/(2.0+x);
|
|
} else { /* 11/16<=|x|< 19/16 */
|
|
id = 1; x = (x-one)/(x+one);
|
|
}
|
|
} else {
|
|
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
|
id = 2; x = (x-1.5)/(one+1.5*x);
|
|
} else { /* 2.4375 <= |x| < 2^66 */
|
|
id = 3; x = -1.0/x;
|
|
}
|
|
}}
|
|
/* end of argument reduction */
|
|
z = x*x;
|
|
w = z*z;
|
|
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
|
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
|
|
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
|
|
if (id<0) return x - x*(s1+s2);
|
|
else {
|
|
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
|
return (hx<0)? -z:z;
|
|
}
|
|
}
|
|
|
|
static double __ieee754_sqrt(double x)
|
|
{
|
|
static const double one = 1.0, tiny=1.0e-300;
|
|
|
|
double z;
|
|
int sign = (int)0x80000000;
|
|
unsigned r,t1,s1,ix1,q1;
|
|
int ix0,s0,q,m,t,i;
|
|
|
|
ix0 = __HI(x); /* high word of x */
|
|
ix1 = __LO(x); /* low word of x */
|
|
|
|
/* take care of Inf and NaN */
|
|
if((ix0&0x7ff00000)==0x7ff00000) {
|
|
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
|
sqrt(-inf)=sNaN */
|
|
}
|
|
/* take care of zero */
|
|
if(ix0<=0) {
|
|
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
|
else if(ix0<0)
|
|
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
|
}
|
|
/* normalize x */
|
|
m = (ix0>>20);
|
|
if(m==0) { /* subnormal x */
|
|
while(ix0==0) {
|
|
m -= 21;
|
|
ix0 |= (ix1>>11); ix1 <<= 21;
|
|
}
|
|
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
|
|
m -= i-1;
|
|
ix0 |= (ix1>>(32-i));
|
|
ix1 <<= i;
|
|
}
|
|
m -= 1023; /* unbias exponent */
|
|
ix0 = (ix0&0x000fffff)|0x00100000;
|
|
if(m&1){ /* odd m, double x to make it even */
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
}
|
|
m >>= 1; /* m = [m/2] */
|
|
|
|
/* generate sqrt(x) bit by bit */
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
|
r = 0x00200000; /* r = moving bit from right to left */
|
|
|
|
while(r!=0) {
|
|
t = s0+r;
|
|
if(t<=ix0) {
|
|
s0 = t+r;
|
|
ix0 -= t;
|
|
q += r;
|
|
}
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
r>>=1;
|
|
}
|
|
|
|
r = sign;
|
|
while(r!=0) {
|
|
t1 = s1+r;
|
|
t = s0;
|
|
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
|
s1 = t1+r;
|
|
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
|
|
ix0 -= t;
|
|
if (ix1 < t1) ix0 -= 1;
|
|
ix1 -= t1;
|
|
q1 += r;
|
|
}
|
|
ix0 += ix0 + ((ix1&sign)>>31);
|
|
ix1 += ix1;
|
|
r>>=1;
|
|
}
|
|
|
|
/* use floating add to find out rounding direction */
|
|
if((ix0|ix1)!=0) {
|
|
z = one-tiny; /* trigger inexact flag */
|
|
if (z>=one) {
|
|
z = one+tiny;
|
|
if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
|
|
else if (z>one) {
|
|
if (q1==(unsigned)0xfffffffe) q+=1;
|
|
q1+=2;
|
|
} else
|
|
q1 += (q1&1);
|
|
}
|
|
}
|
|
ix0 = (q>>1)+0x3fe00000;
|
|
ix1 = q1>>1;
|
|
if ((q&1)==1) ix1 |= sign;
|
|
ix0 += (m <<20);
|
|
__HI(z) = ix0;
|
|
__LO(z) = ix1;
|
|
return z;
|
|
}
|
|
|
|
double fdlibm_sqrt(double x) /* wrapper sqrt */
|
|
{
|
|
return __ieee754_sqrt(x);
|
|
}
|
|
|
|
static double __ieee754_pow(double x, double y)
|
|
{
|
|
static const double
|
|
bp[] = {1.0, 1.5,},
|
|
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
|
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
|
zero = 0.0,
|
|
one = 1.0,
|
|
two = 2.0,
|
|
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
|
huge = 1.0e300,
|
|
tiny = 1.0e-300,
|
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
|
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
|
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
|
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
|
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
|
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
|
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
|
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
|
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
|
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
|
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
|
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
|
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
|
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
|
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
|
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
|
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
|
|
|
double z,ax,z_h,z_l,p_h,p_l;
|
|
double y1,t1,t2,r,s,t,u,v,w;
|
|
int i0,i1,i,j,k,yisint,n;
|
|
int hx,hy,ix,iy;
|
|
unsigned lx,ly;
|
|
|
|
i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
|
|
hx = __HI(x); lx = __LO(x);
|
|
hy = __HI(y); ly = __LO(y);
|
|
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
|
|
|
/* y==zero: x**0 = 1 */
|
|
if((iy|ly)==0) return one;
|
|
|
|
/* +-NaN return x+y */
|
|
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
|
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
|
return x+y;
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
* yisint = 0 ... y is not an integer
|
|
* yisint = 1 ... y is an odd int
|
|
* yisint = 2 ... y is an even int
|
|
*/
|
|
yisint = 0;
|
|
if(hx<0) {
|
|
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
|
else if(iy>=0x3ff00000) {
|
|
k = (iy>>20)-0x3ff; /* exponent */
|
|
if(k>20) {
|
|
j = ly>>(52-k);
|
|
if((j<<(52-k))==ly) yisint = 2-(j&1);
|
|
} else if(ly==0) {
|
|
j = iy>>(20-k);
|
|
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* special value of y */
|
|
if(ly==0) {
|
|
if (iy==0x7ff00000) { /* y is +-inf */
|
|
if(((ix-0x3ff00000)|lx)==0)
|
|
return y - y; /* inf**+-1 is NaN */
|
|
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
|
|
return (hy>=0)? y: zero;
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
|
return (hy<0)?-y: zero;
|
|
}
|
|
if(iy==0x3ff00000) { /* y is +-1 */
|
|
if(hy<0) return one/x; else return x;
|
|
}
|
|
if(hy==0x40000000) return x*x; /* y is 2 */
|
|
if(hy==0x3fe00000) { /* y is 0.5 */
|
|
if(hx>=0) /* x >= +0 */
|
|
return fdlibm_sqrt(x);
|
|
}
|
|
}
|
|
|
|
ax = fdlibm_fabs(x);
|
|
/* special value of x */
|
|
if(lx==0) {
|
|
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
|
z = ax; /*x is +-0,+-inf,+-1*/
|
|
if(hy<0) z = one/z; /* z = (1/|x|) */
|
|
if(hx<0) {
|
|
if(((ix-0x3ff00000)|yisint)==0) {
|
|
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
|
} else if(yisint==1)
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
}
|
|
return z;
|
|
}
|
|
}
|
|
|
|
n = (hx>>31)+1;
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
if((n|yisint)==0) return (x-x)/(x-x);
|
|
|
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
|
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
|
|
|
|
/* |y| is huge */
|
|
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
|
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
|
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
|
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
|
}
|
|
/* over/underflow if x is not close to one */
|
|
if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
|
|
if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
|
|
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
|
t = ax-one; /* t has 20 trailing zeros */
|
|
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
|
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
|
v = t*ivln2_l-w*ivln2;
|
|
t1 = u+v;
|
|
__LO(t1) = 0;
|
|
t2 = v-(t1-u);
|
|
} else {
|
|
double ss,s2,s_h,s_l,t_h,t_l;
|
|
n = 0;
|
|
/* take care subnormal number */
|
|
if(ix<0x00100000)
|
|
{ax *= two53; n -= 53; ix = __HI(ax); }
|
|
n += ((ix)>>20)-0x3ff;
|
|
j = ix&0x000fffff;
|
|
/* determine interval */
|
|
ix = j|0x3ff00000; /* normalize ix */
|
|
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
|
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
|
else {k=0;n+=1;ix -= 0x00100000;}
|
|
__HI(ax) = ix;
|
|
|
|
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
v = one/(ax+bp[k]);
|
|
ss = u*v;
|
|
s_h = ss;
|
|
__LO(s_h) = 0;
|
|
/* t_h=ax+bp[k] High */
|
|
t_h = zero;
|
|
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
|
|
t_l = ax - (t_h-bp[k]);
|
|
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
|
/* compute log(ax) */
|
|
s2 = ss*ss;
|
|
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
|
r += s_l*(s_h+ss);
|
|
s2 = s_h*s_h;
|
|
t_h = 3.0+s2+r;
|
|
__LO(t_h) = 0;
|
|
t_l = r-((t_h-3.0)-s2);
|
|
/* u+v = ss*(1+...) */
|
|
u = s_h*t_h;
|
|
v = s_l*t_h+t_l*ss;
|
|
/* 2/(3log2)*(ss+...) */
|
|
p_h = u+v;
|
|
__LO(p_h) = 0;
|
|
p_l = v-(p_h-u);
|
|
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
|
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
t = (double)n;
|
|
t1 = (((z_h+z_l)+dp_h[k])+t);
|
|
__LO(t1) = 0;
|
|
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
|
}
|
|
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
y1 = y;
|
|
__LO(y1) = 0;
|
|
p_l = (y-y1)*t1+y*t2;
|
|
p_h = y1*t1;
|
|
z = p_l+p_h;
|
|
j = __HI(z);
|
|
i = __LO(z);
|
|
if (j>=0x40900000) { /* z >= 1024 */
|
|
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
|
return s*huge*huge; /* overflow */
|
|
else {
|
|
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
|
}
|
|
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
|
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
|
return s*tiny*tiny; /* underflow */
|
|
else {
|
|
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
|
}
|
|
}
|
|
/*
|
|
* compute 2**(p_h+p_l)
|
|
*/
|
|
i = j&0x7fffffff;
|
|
k = (i>>20)-0x3ff;
|
|
n = 0;
|
|
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
|
n = j+(0x00100000>>(k+1));
|
|
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
|
t = zero;
|
|
__HI(t) = (n&~(0x000fffff>>k));
|
|
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
|
if(j<0) n = -n;
|
|
p_h -= t;
|
|
}
|
|
t = p_l+p_h;
|
|
__LO(t) = 0;
|
|
u = t*lg2_h;
|
|
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
|
z = u+v;
|
|
w = v-(z-u);
|
|
t = z*z;
|
|
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
r = (z*t1)/(t1-two)-(w+z*w);
|
|
z = one-(r-z);
|
|
j = __HI(z);
|
|
j += (n<<20);
|
|
if((j>>20)<=0) z = fdlibm_scalbn(z,n); /* subnormal output */
|
|
else __HI(z) += (n<<20);
|
|
return s*z;
|
|
}
|
|
|
|
static double __ieee754_atan2(double y, double x)
|
|
{
|
|
static const double
|
|
tiny = 1.0e-300,
|
|
zero = 0.0,
|
|
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
|
|
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
|
|
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
|
|
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
|
|
|
double z;
|
|
int k,m,hx,hy,ix,iy;
|
|
unsigned lx,ly;
|
|
|
|
hx = __HI(x); ix = hx&0x7fffffff;
|
|
lx = __LO(x);
|
|
hy = __HI(y); iy = hy&0x7fffffff;
|
|
ly = __LO(y);
|
|
if(((ix|((lx|(unsigned)-(int)lx)>>31))>0x7ff00000)||
|
|
((iy|((ly|(unsigned)-(int)ly)>>31))>0x7ff00000)) /* x or y is NaN */
|
|
return x+y;
|
|
if((hx-0x3ff00000|lx)==0) return fdlibm_atan(y); /* x=1.0 */
|
|
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
|
|
|
|
/* when y = 0 */
|
|
if((iy|ly)==0) {
|
|
switch(m) {
|
|
case 0:
|
|
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
|
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
|
|
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
|
|
}
|
|
}
|
|
/* when x = 0 */
|
|
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
|
|
|
/* when x is INF */
|
|
if(ix==0x7ff00000) {
|
|
if(iy==0x7ff00000) {
|
|
switch(m) {
|
|
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
|
|
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
|
|
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
|
|
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
|
|
}
|
|
} else {
|
|
switch(m) {
|
|
case 0: return zero ; /* atan(+...,+INF) */
|
|
case 1: return -zero ; /* atan(-...,+INF) */
|
|
case 2: return pi+tiny ; /* atan(+...,-INF) */
|
|
case 3: return -pi-tiny ; /* atan(-...,-INF) */
|
|
}
|
|
}
|
|
}
|
|
/* when y is INF */
|
|
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
|
|
|
/* compute y/x */
|
|
k = (iy-ix)>>20;
|
|
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
|
|
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
|
|
else z=fdlibm_atan(fdlibm_fabs(y/x)); /* safe to do y/x */
|
|
switch (m) {
|
|
case 0: return z ; /* atan(+,+) */
|
|
case 1: __HI(z) ^= 0x80000000;
|
|
return z ; /* atan(-,+) */
|
|
case 2: return pi-(z-pi_lo);/* atan(+,-) */
|
|
default: /* case 3 */
|
|
return (z-pi_lo)-pi;/* atan(-,-) */
|
|
}
|
|
}
|
|
|
|
static double __ieee754_asin(double x)
|
|
{
|
|
static const double
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
huge = 1.000e+300,
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
|
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
|
/* coefficient for R(x^2) */
|
|
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
|
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
|
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
|
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
|
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
|
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
|
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
|
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
|
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
|
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
|
|
|
double t,w,p,q,c,r,s;
|
|
int hx,ix;
|
|
hx = __HI(x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>= 0x3ff00000) { /* |x|>= 1 */
|
|
if(((ix-0x3ff00000)|__LO(x))==0)
|
|
/* asin(1)=+-pi/2 with inexact */
|
|
return x*pio2_hi+x*pio2_lo;
|
|
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
|
} else if (ix<0x3fe00000) { /* |x|<0.5 */
|
|
if(ix<0x3e400000) { /* if |x| < 2**-27 */
|
|
if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
|
} else
|
|
t = x*x;
|
|
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
|
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
|
w = p/q;
|
|
return x+x*w;
|
|
}
|
|
/* 1> |x|>= 0.5 */
|
|
w = one-fdlibm_fabs(x);
|
|
t = w*0.5;
|
|
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
|
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
|
s = fdlibm_sqrt(t);
|
|
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
|
|
w = p/q;
|
|
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
|
} else {
|
|
w = s;
|
|
__LO(w) = 0;
|
|
c = (t-w*w)/(s+w);
|
|
r = p/q;
|
|
p = 2.0*s*r-(pio2_lo-2.0*c);
|
|
q = pio4_hi-2.0*w;
|
|
t = pio4_hi-(p-q);
|
|
}
|
|
if(hx>0) return t; else return -t;
|
|
}
|
|
|
|
static double __ieee754_acos(double x)
|
|
{
|
|
static const double
|
|
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
|
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
|
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
|
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
|
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
|
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
|
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
|
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
|
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
|
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
|
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
|
|
|
double z,p,q,r,w,s,c,df;
|
|
int hx,ix;
|
|
hx = __HI(x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x3ff00000) { /* |x| >= 1 */
|
|
if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */
|
|
if(hx>0) return 0.0; /* acos(1) = 0 */
|
|
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
|
}
|
|
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
|
}
|
|
if(ix<0x3fe00000) { /* |x| < 0.5 */
|
|
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
|
z = x*x;
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
r = p/q;
|
|
return pio2_hi - (x - (pio2_lo-x*r));
|
|
} else if (hx<0) { /* x < -0.5 */
|
|
z = (one+x)*0.5;
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
s = fdlibm_sqrt(z);
|
|
r = p/q;
|
|
w = r*s-pio2_lo;
|
|
return pi - 2.0*(s+w);
|
|
} else { /* x > 0.5 */
|
|
z = (one-x)*0.5;
|
|
s = fdlibm_sqrt(z);
|
|
df = s;
|
|
__LO(df) = 0;
|
|
c = (z-df*df)/(s+df);
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
r = p/q;
|
|
w = r*s+c;
|
|
return 2.0*(df+w);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
|
*/
|
|
static const int two_over_pi[] = {
|
|
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
|
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
|
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
|
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
|
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
|
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
|
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
|
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
|
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
|
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
|
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
|
};
|
|
|
|
static const int npio2_hw[] = {
|
|
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
|
|
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
|
|
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
|
|
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
|
|
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
|
|
0x404858EB, 0x404921FB,
|
|
};
|
|
|
|
static int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
|
|
{
|
|
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
|
|
|
|
static const double PIo2[] = {
|
|
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
|
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
|
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
|
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
|
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
|
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
|
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
|
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
|
};
|
|
|
|
static const double
|
|
zero = 0.0,
|
|
one = 1.0,
|
|
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
|
|
|
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
|
double z,fw,f[20],fq[20],q[20];
|
|
|
|
/* initialize jk*/
|
|
jk = init_jk[prec];
|
|
jp = jk;
|
|
|
|
/* determine jx,jv,q0, note that 3>q0 */
|
|
jx = nx-1;
|
|
jv = (e0-3)/24; if(jv<0) jv=0;
|
|
q0 = e0-24*(jv+1);
|
|
|
|
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
|
j = jv-jx; m = jx+jk;
|
|
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
|
|
|
|
/* compute q[0],q[1],...q[jk] */
|
|
for (i=0;i<=jk;i++) {
|
|
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
|
|
}
|
|
|
|
jz = jk;
|
|
recompute:
|
|
/* distill q[] into iq[] reversingly */
|
|
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
|
fw = (double)((int)(twon24* z));
|
|
iq[i] = (int)(z-two24*fw);
|
|
z = q[j-1]+fw;
|
|
}
|
|
|
|
/* compute n */
|
|
z = fdlibm_scalbn(z,q0); /* actual value of z */
|
|
z -= 8.0*fdlibm_floor(z*0.125); /* trim off integer >= 8 */
|
|
n = (int) z;
|
|
z -= (double)n;
|
|
ih = 0;
|
|
if(q0>0) { /* need iq[jz-1] to determine n */
|
|
i = (iq[jz-1]>>(24-q0)); n += i;
|
|
iq[jz-1] -= i<<(24-q0);
|
|
ih = iq[jz-1]>>(23-q0);
|
|
}
|
|
else if(q0==0) ih = iq[jz-1]>>23;
|
|
else if(z>=0.5) ih=2;
|
|
|
|
if(ih>0) { /* q > 0.5 */
|
|
n += 1; carry = 0;
|
|
for(i=0;i<jz ;i++) { /* compute 1-q */
|
|
j = iq[i];
|
|
if(carry==0) {
|
|
if(j!=0) {
|
|
carry = 1; iq[i] = 0x1000000- j;
|
|
}
|
|
} else iq[i] = 0xffffff - j;
|
|
}
|
|
if(q0>0) { /* rare case: chance is 1 in 12 */
|
|
switch(q0) {
|
|
case 1:
|
|
iq[jz-1] &= 0x7fffff; break;
|
|
case 2:
|
|
iq[jz-1] &= 0x3fffff; break;
|
|
}
|
|
}
|
|
if(ih==2) {
|
|
z = one - z;
|
|
if(carry!=0) z -= fdlibm_scalbn(one,q0);
|
|
}
|
|
}
|
|
|
|
/* check if recomputation is needed */
|
|
if(z==zero) {
|
|
j = 0;
|
|
for (i=jz-1;i>=jk;i--) j |= iq[i];
|
|
if(j==0) { /* need recomputation */
|
|
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
|
|
|
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
|
f[jx+i] = (double) ipio2[jv+i];
|
|
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
|
q[i] = fw;
|
|
}
|
|
jz += k;
|
|
goto recompute;
|
|
}
|
|
}
|
|
|
|
/* chop off zero terms */
|
|
if(z==0.0) {
|
|
jz -= 1; q0 -= 24;
|
|
while(iq[jz]==0) { jz--; q0-=24;}
|
|
} else { /* break z into 24-bit if necessary */
|
|
z = fdlibm_scalbn(z,-q0);
|
|
if(z>=two24) {
|
|
fw = (double)((int)(twon24*z));
|
|
iq[jz] = (int)(z-two24*fw);
|
|
jz += 1; q0 += 24;
|
|
iq[jz] = (int) fw;
|
|
} else iq[jz] = (int) z ;
|
|
}
|
|
|
|
/* convert integer "bit" chunk to floating-point value */
|
|
fw = fdlibm_scalbn(one,q0);
|
|
for(i=jz;i>=0;i--) {
|
|
q[i] = fw*(double)iq[i]; fw*=twon24;
|
|
}
|
|
|
|
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
|
for(i=jz;i>=0;i--) {
|
|
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
|
fq[jz-i] = fw;
|
|
}
|
|
|
|
/* compress fq[] into y[] */
|
|
switch(prec) {
|
|
case 0:
|
|
fw = 0.0;
|
|
for (i=jz;i>=0;i--) fw += fq[i];
|
|
y[0] = (ih==0)? fw: -fw;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
fw = 0.0;
|
|
for (i=jz;i>=0;i--) fw += fq[i];
|
|
y[0] = (ih==0)? fw: -fw;
|
|
fw = fq[0]-fw;
|
|
for (i=1;i<=jz;i++) fw += fq[i];
|
|
y[1] = (ih==0)? fw: -fw;
|
|
break;
|
|
case 3: /* painful */
|
|
for (i=jz;i>0;i--) {
|
|
fw = fq[i-1]+fq[i];
|
|
fq[i] += fq[i-1]-fw;
|
|
fq[i-1] = fw;
|
|
}
|
|
for (i=jz;i>1;i--) {
|
|
fw = fq[i-1]+fq[i];
|
|
fq[i] += fq[i-1]-fw;
|
|
fq[i-1] = fw;
|
|
}
|
|
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
|
if(ih==0) {
|
|
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
|
} else {
|
|
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
|
}
|
|
}
|
|
return n&7;
|
|
}
|
|
|
|
|
|
/*
|
|
* invpio2: 53 bits of 2/pi
|
|
* pio2_1: first 33 bit of pi/2
|
|
* pio2_1t: pi/2 - pio2_1
|
|
* pio2_2: second 33 bit of pi/2
|
|
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
|
* pio2_3: third 33 bit of pi/2
|
|
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
|
*/
|
|
|
|
int __ieee754_rem_pio2(double x, double *y)
|
|
{
|
|
static const double
|
|
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
|
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
|
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
|
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
|
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
|
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
|
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
|
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
|
|
|
double z,w,t,r,fn;
|
|
double tx[3];
|
|
int e0,i,j,nx,n,ix,hx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
ix = hx&0x7fffffff;
|
|
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
|
|
{y[0] = x; y[1] = 0; return 0;}
|
|
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
|
|
if(hx>0) {
|
|
z = x - pio2_1;
|
|
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
|
|
y[0] = z - pio2_1t;
|
|
y[1] = (z-y[0])-pio2_1t;
|
|
} else { /* near pi/2, use 33+33+53 bit pi */
|
|
z -= pio2_2;
|
|
y[0] = z - pio2_2t;
|
|
y[1] = (z-y[0])-pio2_2t;
|
|
}
|
|
return 1;
|
|
} else { /* negative x */
|
|
z = x + pio2_1;
|
|
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
|
|
y[0] = z + pio2_1t;
|
|
y[1] = (z-y[0])+pio2_1t;
|
|
} else { /* near pi/2, use 33+33+53 bit pi */
|
|
z += pio2_2;
|
|
y[0] = z + pio2_2t;
|
|
y[1] = (z-y[0])+pio2_2t;
|
|
}
|
|
return -1;
|
|
}
|
|
}
|
|
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
|
|
t = fdlibm_fabs(x);
|
|
n = (int) (t*invpio2+half);
|
|
fn = (double)n;
|
|
r = t-fn*pio2_1;
|
|
w = fn*pio2_1t; /* 1st round good to 85 bit */
|
|
if(n<32&&ix!=npio2_hw[n-1]) {
|
|
y[0] = r-w; /* quick check no cancellation */
|
|
} else {
|
|
j = ix>>20;
|
|
y[0] = r-w;
|
|
i = j-(((__HI(y[0]))>>20)&0x7ff);
|
|
if(i>16) { /* 2nd iteration needed, good to 118 */
|
|
t = r;
|
|
w = fn*pio2_2;
|
|
r = t-w;
|
|
w = fn*pio2_2t-((t-r)-w);
|
|
y[0] = r-w;
|
|
i = j-(((__HI(y[0]))>>20)&0x7ff);
|
|
if(i>49) { /* 3rd iteration need, 151 bits acc */
|
|
t = r; /* will cover all possible cases */
|
|
w = fn*pio2_3;
|
|
r = t-w;
|
|
w = fn*pio2_3t-((t-r)-w);
|
|
y[0] = r-w;
|
|
}
|
|
}
|
|
}
|
|
y[1] = (r-y[0])-w;
|
|
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
|
else return n;
|
|
}
|
|
/*
|
|
* all other (large) arguments
|
|
*/
|
|
if(ix>=0x7ff00000) { /* x is inf or NaN */
|
|
y[0]=y[1]=x-x; return 0;
|
|
}
|
|
/* set z = scalbn(|x|,ilogb(x)-23) */
|
|
__LO(z) = __LO(x);
|
|
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
|
|
__HI(z) = ix - (e0<<20);
|
|
for(i=0;i<2;i++) {
|
|
tx[i] = (double)((int)(z));
|
|
z = (z-tx[i])*two24;
|
|
}
|
|
tx[2] = z;
|
|
nx = 3;
|
|
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
|
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
|
|
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
|
return n;
|
|
}
|
|
|
|
double __kernel_sin(double x, double y, int iy)
|
|
{
|
|
|
|
static const double
|
|
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
|
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
|
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
|
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
|
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
|
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
|
|
|
double z,r,v;
|
|
int ix;
|
|
ix = __HI(x)&0x7fffffff; /* high word of x */
|
|
if(ix<0x3e400000) /* |x| < 2**-27 */
|
|
{if((int)x==0) return x;} /* generate inexact */
|
|
z = x*x;
|
|
v = z*x;
|
|
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
|
|
if(iy==0) return x+v*(S1+z*r);
|
|
else return x-((z*(half*y-v*r)-y)-v*S1);
|
|
}
|
|
|
|
double __kernel_cos(double x, double y)
|
|
{
|
|
static const double
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
|
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
|
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
|
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
|
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
|
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
|
|
|
double a,hz,z,r,qx;
|
|
int ix;
|
|
ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
|
|
if(ix<0x3e400000) { /* if x < 2**27 */
|
|
if(((int)x)==0) return one; /* generate inexact */
|
|
}
|
|
z = x*x;
|
|
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
|
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
|
return one - (0.5*z - (z*r - x*y));
|
|
else {
|
|
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
|
qx = 0.28125;
|
|
} else {
|
|
__HI(qx) = ix-0x00200000; /* x/4 */
|
|
__LO(qx) = 0;
|
|
}
|
|
hz = 0.5*z-qx;
|
|
a = one-qx;
|
|
return a - (hz - (z*r-x*y));
|
|
}
|
|
}
|
|
|
|
double
|
|
__kernel_tan(double x, double y, int iy) {
|
|
double z, r, v, w, s;
|
|
int ix, hx;
|
|
|
|
static const double xxx[] = {
|
|
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
|
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
|
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
|
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
|
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
|
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
|
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
|
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
|
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
|
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
|
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
|
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
|
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
|
/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
|
|
/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
|
|
/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
|
|
};
|
|
#define one xxx[13]
|
|
#define pio4 xxx[14]
|
|
#define pio4lo xxx[15]
|
|
#define T xxx
|
|
/* INDENT ON */
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
ix = hx & 0x7fffffff; /* high word of |x| */
|
|
if (ix < 0x3e300000) { /* x < 2**-28 */
|
|
if ((int) x == 0) { /* generate inexact */
|
|
if (((ix | __LO(x)) | (iy + 1)) == 0)
|
|
return one / fdlibm_fabs(x);
|
|
else {
|
|
if (iy == 1)
|
|
return x;
|
|
else { /* compute -1 / (x+y) carefully */
|
|
double a, t;
|
|
|
|
z = w = x + y;
|
|
__LO(z) = 0;
|
|
v = y - (z - x);
|
|
t = a = -one / w;
|
|
__LO(t) = 0;
|
|
s = one + t * z;
|
|
return t + a * (s + t * v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
|
|
if (hx < 0) {
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
z = pio4 - x;
|
|
w = pio4lo - y;
|
|
x = z + w;
|
|
y = 0.0;
|
|
}
|
|
z = x * x;
|
|
w = z * z;
|
|
/*
|
|
* Break x^5*(T[1]+x^2*T[2]+...) into
|
|
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
|
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
|
*/
|
|
r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
|
|
w * T[11]))));
|
|
v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
|
|
w * T[12])))));
|
|
s = z * x;
|
|
r = y + z * (s * (r + v) + y);
|
|
r += T[0] * s;
|
|
w = x + r;
|
|
if (ix >= 0x3FE59428) {
|
|
v = (double) iy;
|
|
return (double) (1 - ((hx >> 30) & 2)) *
|
|
(v - 2.0 * (x - (w * w / (w + v) - r)));
|
|
}
|
|
if (iy == 1)
|
|
return w;
|
|
else {
|
|
/*
|
|
* if allow error up to 2 ulp, simply return
|
|
* -1.0 / (x+r) here
|
|
*/
|
|
/* compute -1.0 / (x+r) accurately */
|
|
double a, t;
|
|
z = w;
|
|
__LO(z) = 0;
|
|
v = r - (z - x); /* z+v = r+x */
|
|
t = a = -1.0 / w; /* a = -1.0/w */
|
|
__LO(t) = 0;
|
|
s = 1.0 + t * z;
|
|
return t + a * (s + t * v);
|
|
}
|
|
|
|
#undef one
|
|
#undef pio4
|
|
#undef pio4lo
|
|
#undef T
|
|
}
|
|
|
|
double fdlibm_sin(double x)
|
|
{
|
|
double y[2],z=0.0;
|
|
int n, ix;
|
|
|
|
/* High word of x. */
|
|
ix = __HI(x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffff;
|
|
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
|
|
|
|
/* sin(Inf or NaN) is NaN */
|
|
else if (ix>=0x7ff00000) return x-x;
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = __ieee754_rem_pio2(x,y);
|
|
switch(n&3) {
|
|
case 0: return __kernel_sin(y[0],y[1],1);
|
|
case 1: return __kernel_cos(y[0],y[1]);
|
|
case 2: return -__kernel_sin(y[0],y[1],1);
|
|
default:
|
|
return -__kernel_cos(y[0],y[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
double fdlibm_cos(double x)
|
|
{
|
|
double y[2],z=0.0;
|
|
int n, ix;
|
|
|
|
/* High word of x. */
|
|
ix = __HI(x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffff;
|
|
if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
|
|
|
|
/* cos(Inf or NaN) is NaN */
|
|
else if (ix>=0x7ff00000) return x-x;
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = __ieee754_rem_pio2(x,y);
|
|
switch(n&3) {
|
|
case 0: return __kernel_cos(y[0],y[1]);
|
|
case 1: return -__kernel_sin(y[0],y[1],1);
|
|
case 2: return -__kernel_cos(y[0],y[1]);
|
|
default:
|
|
return __kernel_sin(y[0],y[1],1);
|
|
}
|
|
}
|
|
}
|
|
|
|
double fdlibm_tan(double x)
|
|
{
|
|
double y[2],z=0.0;
|
|
int n, ix;
|
|
|
|
/* High word of x. */
|
|
ix = __HI(x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffff;
|
|
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
|
|
|
/* tan(Inf or NaN) is NaN */
|
|
else if (ix>=0x7ff00000) return x-x; /* NaN */
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = __ieee754_rem_pio2(x,y);
|
|
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
|
-1 -- n odd */
|
|
}
|
|
}
|
|
|
|
double fdlibm_asin(double x) /* wrapper asin */
|
|
{
|
|
return __ieee754_asin(x);
|
|
}
|
|
|
|
double fdlibm_acos(double x) /* wrapper acos */
|
|
{
|
|
return __ieee754_acos(x);
|
|
}
|
|
|
|
double fdlibm_atan2(double y, double x) /* wrapper atan2 */
|
|
{
|
|
return __ieee754_atan2(y,x);
|
|
}
|
|
|
|
double fdlibm_pow(double x, double y) /* wrapper pow */
|
|
{
|
|
return __ieee754_pow(x,y);
|
|
}
|
|
|
|
double fdlibm_fmin(double a, double b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
double fdlibm_fmax(double a, double b)
|
|
{
|
|
return a < b ? b : a;
|
|
}
|