/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* Sometimes it's necessary to define __LITTLE_ENDIAN explicitly but these catch some common cases. */ #if defined(_M_IX86) || defined(__i386__) || defined(_M_X64) || defined(__x86_64__) || defined(_M_ARM64) || defined(__aarch64__) || defined(_M_ARM) || defined(__arm__) || defined(__wasm__) || defined(__EMSCRIPTEN__) #define __LITTLE_ENDIAN #endif typedef union { double d; int i[2]; } fdlibm_bits; #ifdef __LITTLE_ENDIAN #define __HI(x) (((fdlibm_bits*)&(x))->i[1]) #define __LO(x) (((fdlibm_bits*)&(x))->i[0]) #else #define __HI(x) (((fdlibm_bits*)&(x))->i[0]) #define __LO(x) (((fdlibm_bits*)&(x))->i[1]) #endif /* * set X_TLOSS = pi*2**52, which is possibly defined in * (one may replace the following line by "#include ") */ double fdlibm_copysign(double x, double y) { __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000); return x; } double fdlibm_fabs(double x) { __HI(x) &= 0x7fffffff; return x; } double fdlibm_scalbn(double x, int n) { static const double two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ huge = 1.0e+300, tiny = 1.0e-300; int k,hx,lx; hx = __HI(x); lx = __LO(x); k = (hx&0x7ff00000)>>20; /* extract exponent */ if (k==0) { /* 0 or subnormal x */ if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ x *= two54; hx = __HI(x); k = ((hx&0x7ff00000)>>20) - 54; if (n< -50000) return tiny*x; /*underflow*/ } if (k==0x7ff) return x+x; /* NaN or Inf */ k = k+n; if (k > 0x7fe) return huge*fdlibm_copysign(huge,x); /* overflow */ if (k > 0) /* normal result */ {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} if (k <= -54) { if (n > 50000) /* in case integer overflow in n+k */ return huge*fdlibm_copysign(huge,x); /*overflow*/ else return tiny*fdlibm_copysign(tiny,x); /*underflow*/ } k += 54; /* subnormal result */ __HI(x) = (hx&0x800fffff)|(k<<20); return x*twom54; } double fdlibm_floor(double x) { static const double huge = 1.0e300; int i0,i1,j0; unsigned i,j; i0 = __HI(x); i1 = __LO(x); j0 = ((i0>>20)&0x7ff)-0x3ff; if(j0<20) { if(j0<0) { /* raise inexact if x != 0 */ if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ if(i0>=0) {i0=i1=0;} else if(((i0&0x7fffffff)|i1)!=0) { i0=0xbff00000;i1=0;} } } else { i = (0x000fffff)>>j0; if(((i0&i)|i1)==0) return x; /* x is integral */ if(huge+x>0.0) { /* raise inexact flag */ if(i0<0) i0 += (0x00100000)>>j0; i0 &= (~i); i1=0; } } } else if (j0>51) { if(j0==0x400) return x+x; /* inf or NaN */ else return x; /* x is integral */ } else { i = ((unsigned)(0xffffffff))>>(j0-20); if((i1&i)==0) return x; /* x is integral */ if(huge+x>0.0) { /* raise inexact flag */ if(i0<0) { if(j0==20) i0+=1; else { j = i1+(1<<(52-j0)); if(j<(unsigned)i1) i0 +=1 ; /* got a carry */ i1=j; } } i1 &= (~i); } } __HI(x) = i0; __LO(x) = i1; return x; } double fdlibm_frexp(double x, int *eptr) { static const double two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */ int hx, ix, lx; hx = __HI(x); ix = 0x7fffffff&hx; lx = __LO(x); *eptr = 0; if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */ if (ix<0x00100000) { /* subnormal */ x *= two54; hx = __HI(x); ix = hx&0x7fffffff; *eptr = -54; } *eptr += (ix>>20)-1022; hx = (hx&0x800fffff)|0x3fe00000; __HI(x) = hx; return x; } double fdlibm_atan(double x) { static const double atanhi[] = { 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ }; static const double atanlo[] = { 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ }; static const double aT[] = { 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ }; static const double one = 1.0, huge = 1.0e300; double w,s1,s2,z; int ix,hx,id; hx = __HI(x); ix = hx&0x7fffffff; if(ix>=0x44100000) { /* if |x| >= 2^66 */ if(ix>0x7ff00000|| (ix==0x7ff00000&&(__LO(x)!=0))) return x+x; /* NaN */ if(hx>0) return atanhi[3]+atanlo[3]; else return -atanhi[3]-atanlo[3]; } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ if (ix < 0x3e200000) { /* |x| < 2^-29 */ if(huge+x>one) return x; /* raise inexact */ } id = -1; } else { x = fdlibm_fabs(x); if (ix < 0x3ff30000) { /* |x| < 1.1875 */ if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ id = 0; x = (2.0*x-one)/(2.0+x); } else { /* 11/16<=|x|< 19/16 */ id = 1; x = (x-one)/(x+one); } } else { if (ix < 0x40038000) { /* |x| < 2.4375 */ id = 2; x = (x-1.5)/(one+1.5*x); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -1.0/x; } }} /* end of argument reduction */ z = x*x; w = z*z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); if (id<0) return x - x*(s1+s2); else { z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); return (hx<0)? -z:z; } } static double __ieee754_sqrt(double x) { static const double one = 1.0, tiny=1.0e-300; double z; int sign = (int)0x80000000; unsigned r,t1,s1,ix1,q1; int ix0,s0,q,m,t,i; ix0 = __HI(x); /* high word of x */ ix1 = __LO(x); /* low word of x */ /* take care of Inf and NaN */ if((ix0&0x7ff00000)==0x7ff00000) { return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf sqrt(-inf)=sNaN */ } /* take care of zero */ if(ix0<=0) { if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ else if(ix0<0) return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ } /* normalize x */ m = (ix0>>20); if(m==0) { /* subnormal x */ while(ix0==0) { m -= 21; ix0 |= (ix1>>11); ix1 <<= 21; } for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; m -= i-1; ix0 |= (ix1>>(32-i)); ix1 <<= i; } m -= 1023; /* unbias exponent */ ix0 = (ix0&0x000fffff)|0x00100000; if(m&1){ /* odd m, double x to make it even */ ix0 += ix0 + ((ix1&sign)>>31); ix1 += ix1; } m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix0 += ix0 + ((ix1&sign)>>31); ix1 += ix1; q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ r = 0x00200000; /* r = moving bit from right to left */ while(r!=0) { t = s0+r; if(t<=ix0) { s0 = t+r; ix0 -= t; q += r; } ix0 += ix0 + ((ix1&sign)>>31); ix1 += ix1; r>>=1; } r = sign; while(r!=0) { t1 = s1+r; t = s0; if((t>31); ix1 += ix1; r>>=1; } /* use floating add to find out rounding direction */ if((ix0|ix1)!=0) { z = one-tiny; /* trigger inexact flag */ if (z>=one) { z = one+tiny; if (q1==(unsigned)0xffffffff) { q1=0; q += 1;} else if (z>one) { if (q1==(unsigned)0xfffffffe) q+=1; q1+=2; } else q1 += (q1&1); } } ix0 = (q>>1)+0x3fe00000; ix1 = q1>>1; if ((q&1)==1) ix1 |= sign; ix0 += (m <<20); __HI(z) = ix0; __LO(z) = ix1; return z; } double fdlibm_sqrt(double x) /* wrapper sqrt */ { return __ieee754_sqrt(x); } static double __ieee754_pow(double x, double y) { static const double bp[] = {1.0, 1.5,}, dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ huge = 1.0e300, tiny = 1.0e-300, /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ double z,ax,z_h,z_l,p_h,p_l; double y1,t1,t2,r,s,t,u,v,w; int i0,i1,i,j,k,yisint,n; int hx,hy,ix,iy; unsigned lx,ly; i0 = ((*(int*)&one)>>29)^1; i1=1-i0; hx = __HI(x); lx = __LO(x); hy = __HI(y); ly = __LO(y); ix = hx&0x7fffffff; iy = hy&0x7fffffff; /* y==zero: x**0 = 1 */ if((iy|ly)==0) return one; /* +-NaN return x+y */ if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) return x+y; /* determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ yisint = 0; if(hx<0) { if(iy>=0x43400000) yisint = 2; /* even integer y */ else if(iy>=0x3ff00000) { k = (iy>>20)-0x3ff; /* exponent */ if(k>20) { j = ly>>(52-k); if((j<<(52-k))==ly) yisint = 2-(j&1); } else if(ly==0) { j = iy>>(20-k); if((j<<(20-k))==iy) yisint = 2-(j&1); } } } /* special value of y */ if(ly==0) { if (iy==0x7ff00000) { /* y is +-inf */ if(((ix-0x3ff00000)|lx)==0) return y - y; /* inf**+-1 is NaN */ else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ return (hy>=0)? y: zero; else /* (|x|<1)**-,+inf = inf,0 */ return (hy<0)?-y: zero; } if(iy==0x3ff00000) { /* y is +-1 */ if(hy<0) return one/x; else return x; } if(hy==0x40000000) return x*x; /* y is 2 */ if(hy==0x3fe00000) { /* y is 0.5 */ if(hx>=0) /* x >= +0 */ return fdlibm_sqrt(x); } } ax = fdlibm_fabs(x); /* special value of x */ if(lx==0) { if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ z = ax; /*x is +-0,+-inf,+-1*/ if(hy<0) z = one/z; /* z = (1/|x|) */ if(hx<0) { if(((ix-0x3ff00000)|yisint)==0) { z = (z-z)/(z-z); /* (-1)**non-int is NaN */ } else if(yisint==1) z = -z; /* (x<0)**odd = -(|x|**odd) */ } return z; } } n = (hx>>31)+1; /* (x<0)**(non-int) is NaN */ if((n|yisint)==0) return (x-x)/(x-x); s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ /* |y| is huge */ if(iy>0x41e00000) { /* if |y| > 2**31 */ if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; } /* over/underflow if x is not close to one */ if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; /* now |1-x| is tiny <= 2**-20, suffice to compute log(x) by x-x^2/2+x^3/3-x^4/4 */ t = ax-one; /* t has 20 trailing zeros */ w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ v = t*ivln2_l-w*ivln2; t1 = u+v; __LO(t1) = 0; t2 = v-(t1-u); } else { double ss,s2,s_h,s_l,t_h,t_l; n = 0; /* take care subnormal number */ if(ix<0x00100000) {ax *= two53; n -= 53; ix = __HI(ax); } n += ((ix)>>20)-0x3ff; j = ix&0x000fffff; /* determine interval */ ix = j|0x3ff00000; /* normalize ix */ if(j<=0x3988E) k=0; /* |x|>1)|0x20000000)+0x00080000+(k<<18); t_l = ax - (t_h-bp[k]); s_l = v*((u-s_h*t_h)-s_h*t_l); /* compute log(ax) */ s2 = ss*ss; r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); r += s_l*(s_h+ss); s2 = s_h*s_h; t_h = 3.0+s2+r; __LO(t_h) = 0; t_l = r-((t_h-3.0)-s2); /* u+v = ss*(1+...) */ u = s_h*t_h; v = s_l*t_h+t_l*ss; /* 2/(3log2)*(ss+...) */ p_h = u+v; __LO(p_h) = 0; p_l = v-(p_h-u); z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ z_l = cp_l*p_h+p_l*cp+dp_l[k]; /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ t = (double)n; t1 = (((z_h+z_l)+dp_h[k])+t); __LO(t1) = 0; t2 = z_l-(((t1-t)-dp_h[k])-z_h); } /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ y1 = y; __LO(y1) = 0; p_l = (y-y1)*t1+y*t2; p_h = y1*t1; z = p_l+p_h; j = __HI(z); i = __LO(z); if (j>=0x40900000) { /* z >= 1024 */ if(((j-0x40900000)|i)!=0) /* if z > 1024 */ return s*huge*huge; /* overflow */ else { if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ } } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ return s*tiny*tiny; /* underflow */ else { if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ } } /* * compute 2**(p_h+p_l) */ i = j&0x7fffffff; k = (i>>20)-0x3ff; n = 0; if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ n = j+(0x00100000>>(k+1)); k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ t = zero; __HI(t) = (n&~(0x000fffff>>k)); n = ((n&0x000fffff)|0x00100000)>>(20-k); if(j<0) n = -n; p_h -= t; } t = p_l+p_h; __LO(t) = 0; u = t*lg2_h; v = (p_l-(t-p_h))*lg2+t*lg2_l; z = u+v; w = v-(z-u); t = z*z; t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); r = (z*t1)/(t1-two)-(w+z*w); z = one-(r-z); j = __HI(z); j += (n<<20); if((j>>20)<=0) z = fdlibm_scalbn(z,n); /* subnormal output */ else __HI(z) += (n<<20); return s*z; } static double __ieee754_atan2(double y, double x) { static const double tiny = 1.0e-300, zero = 0.0, pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ double z; int k,m,hx,hy,ix,iy; unsigned lx,ly; hx = __HI(x); ix = hx&0x7fffffff; lx = __LO(x); hy = __HI(y); iy = hy&0x7fffffff; ly = __LO(y); if(((ix|((lx|(unsigned)-(int)lx)>>31))>0x7ff00000)|| ((iy|((ly|(unsigned)-(int)ly)>>31))>0x7ff00000)) /* x or y is NaN */ return x+y; if((hx-0x3ff00000|lx)==0) return fdlibm_atan(y); /* x=1.0 */ m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ /* when y = 0 */ if((iy|ly)==0) { switch(m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi+tiny;/* atan(+0,-anything) = pi */ case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; /* when x is INF */ if(ix==0x7ff00000) { if(iy==0x7ff00000) { switch(m) { case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ } } else { switch(m) { case 0: return zero ; /* atan(+...,+INF) */ case 1: return -zero ; /* atan(-...,+INF) */ case 2: return pi+tiny ; /* atan(+...,-INF) */ case 3: return -pi-tiny ; /* atan(-...,-INF) */ } } } /* when y is INF */ if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; /* compute y/x */ k = (iy-ix)>>20; if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ else z=fdlibm_atan(fdlibm_fabs(y/x)); /* safe to do y/x */ switch (m) { case 0: return z ; /* atan(+,+) */ case 1: __HI(z) ^= 0x80000000; return z ; /* atan(-,+) */ case 2: return pi-(z-pi_lo);/* atan(+,-) */ default: /* case 3 */ return (z-pi_lo)-pi;/* atan(-,-) */ } } static double __ieee754_asin(double x) { static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ huge = 1.000e+300, pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ /* coefficient for R(x^2) */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ double t,w,p,q,c,r,s; int hx,ix; hx = __HI(x); ix = hx&0x7fffffff; if(ix>= 0x3ff00000) { /* |x|>= 1 */ if(((ix-0x3ff00000)|__LO(x))==0) /* asin(1)=+-pi/2 with inexact */ return x*pio2_hi+x*pio2_lo; return (x-x)/(x-x); /* asin(|x|>1) is NaN */ } else if (ix<0x3fe00000) { /* |x|<0.5 */ if(ix<0x3e400000) { /* if |x| < 2**-27 */ if(huge+x>one) return x;/* return x with inexact if x!=0*/ } else t = x*x; p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); w = p/q; return x+x*w; } /* 1> |x|>= 0.5 */ w = one-fdlibm_fabs(x); t = w*0.5; p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); s = fdlibm_sqrt(t); if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ w = p/q; t = pio2_hi-(2.0*(s+s*w)-pio2_lo); } else { w = s; __LO(w) = 0; c = (t-w*w)/(s+w); r = p/q; p = 2.0*s*r-(pio2_lo-2.0*c); q = pio4_hi-2.0*w; t = pio4_hi-(p-q); } if(hx>0) return t; else return -t; } static double __ieee754_acos(double x) { static const double one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ double z,p,q,r,w,s,c,df; int hx,ix; hx = __HI(x); ix = hx&0x7fffffff; if(ix>=0x3ff00000) { /* |x| >= 1 */ if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */ if(hx>0) return 0.0; /* acos(1) = 0 */ else return pi+2.0*pio2_lo; /* acos(-1)= pi */ } return (x-x)/(x-x); /* acos(|x|>1) is NaN */ } if(ix<0x3fe00000) { /* |x| < 0.5 */ if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ z = x*x; p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); r = p/q; return pio2_hi - (x - (pio2_lo-x*r)); } else if (hx<0) { /* x < -0.5 */ z = (one+x)*0.5; p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); s = fdlibm_sqrt(z); r = p/q; w = r*s-pio2_lo; return pi - 2.0*(s+w); } else { /* x > 0.5 */ z = (one-x)*0.5; s = fdlibm_sqrt(z); df = s; __LO(df) = 0; c = (z-df*df)/(s+df); p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); r = p/q; w = r*s+c; return 2.0*(df+w); } } /* * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi */ static const int two_over_pi[] = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, }; static const int npio2_hw[] = { 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, 0x404858EB, 0x404921FB, }; static int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) { static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ static const double PIo2[] = { 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ }; static const double zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; double z,fw,f[20],fq[20],q[20]; /* initialize jk*/ jk = init_jk[prec]; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx-1; jv = (e0-3)/24; if(jv<0) jv=0; q0 = e0-24*(jv+1); /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ j = jv-jx; m = jx+jk; for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; /* compute q[0],q[1],...q[jk] */ for (i=0;i<=jk;i++) { for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz = jk; recompute: /* distill q[] into iq[] reversingly */ for(i=0,j=jz,z=q[jz];j>0;i++,j--) { fw = (double)((int)(twon24* z)); iq[i] = (int)(z-two24*fw); z = q[j-1]+fw; } /* compute n */ z = fdlibm_scalbn(z,q0); /* actual value of z */ z -= 8.0*fdlibm_floor(z*0.125); /* trim off integer >= 8 */ n = (int) z; z -= (double)n; ih = 0; if(q0>0) { /* need iq[jz-1] to determine n */ i = (iq[jz-1]>>(24-q0)); n += i; iq[jz-1] -= i<<(24-q0); ih = iq[jz-1]>>(23-q0); } else if(q0==0) ih = iq[jz-1]>>23; else if(z>=0.5) ih=2; if(ih>0) { /* q > 0.5 */ n += 1; carry = 0; for(i=0;i0) { /* rare case: chance is 1 in 12 */ switch(q0) { case 1: iq[jz-1] &= 0x7fffff; break; case 2: iq[jz-1] &= 0x3fffff; break; } } if(ih==2) { z = one - z; if(carry!=0) z -= fdlibm_scalbn(one,q0); } } /* check if recomputation is needed */ if(z==zero) { j = 0; for (i=jz-1;i>=jk;i--) j |= iq[i]; if(j==0) { /* need recomputation */ for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ f[jx+i] = (double) ipio2[jv+i]; for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz += k; goto recompute; } } /* chop off zero terms */ if(z==0.0) { jz -= 1; q0 -= 24; while(iq[jz]==0) { jz--; q0-=24;} } else { /* break z into 24-bit if necessary */ z = fdlibm_scalbn(z,-q0); if(z>=two24) { fw = (double)((int)(twon24*z)); iq[jz] = (int)(z-two24*fw); jz += 1; q0 += 24; iq[jz] = (int) fw; } else iq[jz] = (int) z ; } /* convert integer "bit" chunk to floating-point value */ fw = fdlibm_scalbn(one,q0); for(i=jz;i>=0;i--) { q[i] = fw*(double)iq[i]; fw*=twon24; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for(i=jz;i>=0;i--) { for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; fq[jz-i] = fw; } /* compress fq[] into y[] */ switch(prec) { case 0: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; break; case 1: case 2: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; fw = fq[0]-fw; for (i=1;i<=jz;i++) fw += fq[i]; y[1] = (ih==0)? fw: -fw; break; case 3: /* painful */ for (i=jz;i>0;i--) { fw = fq[i-1]+fq[i]; fq[i] += fq[i-1]-fw; fq[i-1] = fw; } for (i=jz;i>1;i--) { fw = fq[i-1]+fq[i]; fq[i] += fq[i-1]-fw; fq[i-1] = fw; } for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; if(ih==0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n&7; } /* * invpio2: 53 bits of 2/pi * pio2_1: first 33 bit of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 33 bit of pi/2 * pio2_2t: pi/2 - (pio2_1+pio2_2) * pio2_3: third 33 bit of pi/2 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ int __ieee754_rem_pio2(double x, double *y) { static const double zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ double z,w,t,r,fn; double tx[3]; int e0,i,j,nx,n,ix,hx; hx = __HI(x); /* high word of x */ ix = hx&0x7fffffff; if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ {y[0] = x; y[1] = 0; return 0;} if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ if(hx>0) { z = x - pio2_1; if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z - pio2_1t; y[1] = (z-y[0])-pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z -= pio2_2; y[0] = z - pio2_2t; y[1] = (z-y[0])-pio2_2t; } return 1; } else { /* negative x */ z = x + pio2_1; if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z + pio2_1t; y[1] = (z-y[0])+pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z += pio2_2; y[0] = z + pio2_2t; y[1] = (z-y[0])+pio2_2t; } return -1; } } if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ t = fdlibm_fabs(x); n = (int) (t*invpio2+half); fn = (double)n; r = t-fn*pio2_1; w = fn*pio2_1t; /* 1st round good to 85 bit */ if(n<32&&ix!=npio2_hw[n-1]) { y[0] = r-w; /* quick check no cancellation */ } else { j = ix>>20; y[0] = r-w; i = j-(((__HI(y[0]))>>20)&0x7ff); if(i>16) { /* 2nd iteration needed, good to 118 */ t = r; w = fn*pio2_2; r = t-w; w = fn*pio2_2t-((t-r)-w); y[0] = r-w; i = j-(((__HI(y[0]))>>20)&0x7ff); if(i>49) { /* 3rd iteration need, 151 bits acc */ t = r; /* will cover all possible cases */ w = fn*pio2_3; r = t-w; w = fn*pio2_3t-((t-r)-w); y[0] = r-w; } } } y[1] = (r-y[0])-w; if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} else return n; } /* * all other (large) arguments */ if(ix>=0x7ff00000) { /* x is inf or NaN */ y[0]=y[1]=x-x; return 0; } /* set z = scalbn(|x|,ilogb(x)-23) */ __LO(z) = __LO(x); e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */ __HI(z) = ix - (e0<<20); for(i=0;i<2;i++) { tx[i] = (double)((int)(z)); z = (z-tx[i])*two24; } tx[2] = z; nx = 3; while(tx[nx-1]==zero) nx--; /* skip zero term */ n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} return n; } double __kernel_sin(double x, double y, int iy) { static const double half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ double z,r,v; int ix; ix = __HI(x)&0x7fffffff; /* high word of x */ if(ix<0x3e400000) /* |x| < 2**-27 */ {if((int)x==0) return x;} /* generate inexact */ z = x*x; v = z*x; r = S2+z*(S3+z*(S4+z*(S5+z*S6))); if(iy==0) return x+v*(S1+z*r); else return x-((z*(half*y-v*r)-y)-v*S1); } double __kernel_cos(double x, double y) { static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ double a,hz,z,r,qx; int ix; ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/ if(ix<0x3e400000) { /* if x < 2**27 */ if(((int)x)==0) return one; /* generate inexact */ } z = x*x; r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); if(ix < 0x3FD33333) /* if |x| < 0.3 */ return one - (0.5*z - (z*r - x*y)); else { if(ix > 0x3fe90000) { /* x > 0.78125 */ qx = 0.28125; } else { __HI(qx) = ix-0x00200000; /* x/4 */ __LO(qx) = 0; } hz = 0.5*z-qx; a = one-qx; return a - (hz - (z*r-x*y)); } } double __kernel_tan(double x, double y, int iy) { double z, r, v, w, s; int ix, hx; static const double xxx[] = { 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ }; #define one xxx[13] #define pio4 xxx[14] #define pio4lo xxx[15] #define T xxx /* INDENT ON */ hx = __HI(x); /* high word of x */ ix = hx & 0x7fffffff; /* high word of |x| */ if (ix < 0x3e300000) { /* x < 2**-28 */ if ((int) x == 0) { /* generate inexact */ if (((ix | __LO(x)) | (iy + 1)) == 0) return one / fdlibm_fabs(x); else { if (iy == 1) return x; else { /* compute -1 / (x+y) carefully */ double a, t; z = w = x + y; __LO(z) = 0; v = y - (z - x); t = a = -one / w; __LO(t) = 0; s = one + t * z; return t + a * (s + t * v); } } } } if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ if (hx < 0) { x = -x; y = -y; } z = pio4 - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; w = z * z; /* * Break x^5*(T[1]+x^2*T[2]+...) into * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) */ r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); s = z * x; r = y + z * (s * (r + v) + y); r += T[0] * s; w = x + r; if (ix >= 0x3FE59428) { v = (double) iy; return (double) (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r))); } if (iy == 1) return w; else { /* * if allow error up to 2 ulp, simply return * -1.0 / (x+r) here */ /* compute -1.0 / (x+r) accurately */ double a, t; z = w; __LO(z) = 0; v = r - (z - x); /* z+v = r+x */ t = a = -1.0 / w; /* a = -1.0/w */ __LO(t) = 0; s = 1.0 + t * z; return t + a * (s + t * v); } #undef one #undef pio4 #undef pio4lo #undef T } double fdlibm_sin(double x) { double y[2],z=0.0; int n, ix; /* High word of x. */ ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); /* sin(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* argument reduction needed */ else { n = __ieee754_rem_pio2(x,y); switch(n&3) { case 0: return __kernel_sin(y[0],y[1],1); case 1: return __kernel_cos(y[0],y[1]); case 2: return -__kernel_sin(y[0],y[1],1); default: return -__kernel_cos(y[0],y[1]); } } } double fdlibm_cos(double x) { double y[2],z=0.0; int n, ix; /* High word of x. */ ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_cos(x,z); /* cos(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* argument reduction needed */ else { n = __ieee754_rem_pio2(x,y); switch(n&3) { case 0: return __kernel_cos(y[0],y[1]); case 1: return -__kernel_sin(y[0],y[1],1); case 2: return -__kernel_cos(y[0],y[1]); default: return __kernel_sin(y[0],y[1],1); } } } double fdlibm_tan(double x) { double y[2],z=0.0; int n, ix; /* High word of x. */ ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); /* tan(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* NaN */ /* argument reduction needed */ else { n = __ieee754_rem_pio2(x,y); return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even -1 -- n odd */ } } double fdlibm_asin(double x) /* wrapper asin */ { return __ieee754_asin(x); } double fdlibm_acos(double x) /* wrapper acos */ { return __ieee754_acos(x); } double fdlibm_atan2(double y, double x) /* wrapper atan2 */ { return __ieee754_atan2(y,x); } double fdlibm_pow(double x, double y) /* wrapper pow */ { return __ieee754_pow(x,y); } double fdlibm_fmin(double a, double b) { return a < b ? a : b; } double fdlibm_fmax(double a, double b) { return a < b ? b : a; }