#include "external/sokol_app.h" #include "external/sokol_gfx.h" #include "external/sokol_time.h" #include "external/sokol_glue.h" #include "external/umath.h" #include "../../ufbx.h" #include "shaders/mesh.h" #include #include #include #define MAX_BONES 64 #define MAX_BLEND_SHAPES 64 um_vec2 ufbx_to_um_vec2(ufbx_vec2 v) { return um_v2((float)v.x, (float)v.y); } um_vec3 ufbx_to_um_vec3(ufbx_vec3 v) { return um_v3((float)v.x, (float)v.y, (float)v.z); } um_quat ufbx_to_um_quat(ufbx_quat v) { return um_quat_xyzw((float)v.x, (float)v.y, (float)v.z, (float)v.w); } um_mat ufbx_to_um_mat(ufbx_matrix m) { return um_mat_rows( (float)m.m00, (float)m.m01, (float)m.m02, (float)m.m03, (float)m.m10, (float)m.m11, (float)m.m12, (float)m.m13, (float)m.m20, (float)m.m21, (float)m.m22, (float)m.m23, 0, 0, 0, 1, ); } typedef struct mesh_vertex { um_vec3 position; um_vec3 normal; um_vec2 uv; float f_vertex_index; } mesh_vertex; typedef struct skin_vertex { uint8_t bone_index[4]; uint8_t bone_weight[4]; } skin_vertex; static const sg_layout_desc mesh_vertex_layout = { .attrs = { { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT3 }, { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT3 }, { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT2 }, { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT }, }, }; static const sg_layout_desc skinned_mesh_vertex_layout = { .attrs = { { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT3 }, { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT3 }, { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT2 }, { .buffer_index = 0, .format = SG_VERTEXFORMAT_FLOAT }, { .buffer_index = 1, .format = SG_VERTEXFORMAT_BYTE4 }, { .buffer_index = 1, .format = SG_VERTEXFORMAT_UBYTE4N }, }, }; void print_error(const ufbx_error *error, const char *description) { char buffer[1024]; ufbx_format_error(buffer, sizeof(buffer), error); fprintf(stderr, "%s\n%s\n", description, buffer); } void *alloc_imp(size_t type_size, size_t count) { void *ptr = malloc(type_size * count); if (!ptr) { fprintf(stderr, "Out of memory\n"); exit(1); } memset(ptr, 0, type_size * count); return ptr; } void *alloc_dup_imp(size_t type_size, size_t count, const void *data) { void *ptr = malloc(type_size * count); if (!ptr) { fprintf(stderr, "Out of memory\n"); exit(1); } memcpy(ptr, data, type_size * count); return ptr; } #define alloc(m_type, m_count) (m_type*)alloc_imp(sizeof(m_type), (m_count)) #define alloc_dup(m_type, m_count, m_data) (m_type*)alloc_dup_imp(sizeof(m_type), (m_count), (m_data)) size_t min_sz(size_t a, size_t b) { return a < b ? a : b; } size_t max_sz(size_t a, size_t b) { return b < a ? a : b; } size_t clamp_sz(size_t a, size_t min_a, size_t max_a) { return min_sz(max_sz(a, min_a), max_a); } typedef struct viewer_node_anim { float time_begin; float framerate; size_t num_frames; um_quat const_rot; um_vec3 const_pos; um_vec3 const_scale; um_quat *rot; um_vec3 *pos; um_vec3 *scale; } viewer_node_anim; typedef struct viewer_blend_channel_anim { float const_weight; float *weight; } viewer_blend_channel_anim; typedef struct viewer_anim { const char *name; float time_begin; float time_end; float framerate; size_t num_frames; viewer_node_anim *nodes; viewer_blend_channel_anim *blend_channels; } viewer_anim; typedef struct viewer_node { int32_t parent_index; um_mat geometry_to_node; um_mat node_to_parent; um_mat node_to_world; um_mat geometry_to_world; um_mat normal_to_world; } viewer_node; typedef struct viewer_blend_channel { float weight; } viewer_blend_channel; typedef struct viewer_mesh_part { sg_buffer vertex_buffer; sg_buffer index_buffer; sg_buffer skin_buffer; // Optional size_t num_indices; int32_t material_index; } viewer_mesh_part; typedef struct viewer_mesh { int32_t *instance_node_indices; size_t num_instances; viewer_mesh_part *parts; size_t num_parts; bool aabb_is_local; um_vec3 aabb_min; um_vec3 aabb_max; // Skinning (optional) bool skinned; size_t num_bones; int32_t bone_indices[MAX_BONES]; um_mat bone_matrices[MAX_BONES]; // Blend shapes (optional) size_t num_blend_shapes; sg_image blend_shape_image; int32_t blend_channel_indices[MAX_BLEND_SHAPES]; } viewer_mesh; typedef struct viewer_scene { viewer_node *nodes; size_t num_nodes; viewer_mesh *meshes; size_t num_meshes; viewer_blend_channel *blend_channels; size_t num_blend_channels; viewer_anim *animations; size_t num_animations; um_vec3 aabb_min; um_vec3 aabb_max; } viewer_scene; typedef struct viewer { viewer_scene scene; float anim_time; sg_shader shader_mesh_lit_static; sg_shader shader_mesh_lit_skinned; sg_pipeline pipe_mesh_lit_static; sg_pipeline pipe_mesh_lit_skinned; sg_image empty_blend_shape_image; um_mat world_to_view; um_mat view_to_clip; um_mat world_to_clip; float camera_yaw; float camera_pitch; float camera_distance; uint32_t mouse_buttons; } viewer; void read_node(viewer_node *vnode, ufbx_node *node) { vnode->parent_index = node->parent ? node->parent->typed_id : -1; vnode->node_to_parent = ufbx_to_um_mat(node->node_to_parent); vnode->node_to_world = ufbx_to_um_mat(node->node_to_world); vnode->geometry_to_node = ufbx_to_um_mat(node->geometry_to_node); vnode->geometry_to_world = ufbx_to_um_mat(node->geometry_to_world); vnode->normal_to_world = ufbx_to_um_mat(ufbx_matrix_for_normals(&node->geometry_to_world)); } sg_image pack_blend_channels_to_image(ufbx_mesh *mesh, ufbx_blend_channel **channels, size_t num_channels) { // We pack the blend shape data into a 1024xNxM texture array where each texel // contains the vertex `Y*1024 + X` for blend shape `Z`. uint32_t tex_width = 1024; uint32_t tex_height_min = ((uint32_t)mesh->num_vertices + tex_width - 1) / tex_width; uint32_t tex_slices = (uint32_t)num_channels; // Let's make the texture size a power of two just to be sure... uint32_t tex_height = 1; while (tex_height < tex_height_min) { tex_height *= 2; } // NOTE: A proper implementation would probably compress the shape offsets to FP16 // or some other quantization to save space, we use full FP32 here for simplicity. size_t tex_texels = tex_width * tex_height * tex_slices; um_vec4 *tex_data = alloc(um_vec4, tex_texels); // Copy the vertex offsets from each blend shape for (uint32_t ci = 0; ci < num_channels; ci++) { ufbx_blend_channel *chan = channels[ci]; um_vec4 *slice_data = tex_data + tex_width * tex_height * ci; // Let's use the last blend shape if there's multiple blend phases as we don't // support it. Fortunately this feature is quite rarely used in practice. ufbx_blend_shape *shape = chan->keyframes.data[chan->keyframes.count - 1].shape; for (size_t oi = 0; oi < shape->num_offsets; oi++) { uint32_t ix = (uint32_t)shape->offset_vertices.data[oi]; if (ix < mesh->num_vertices) { // We don't need to do any indexing to X/Y here as the memory layout of // `slice_data` pixels is the same as the linear buffer would be. slice_data[ix].xyz = ufbx_to_um_vec3(shape->position_offsets.data[oi]); } } } // Upload the combined blend offset image to the GPU sg_image image = sg_make_image(&(sg_image_desc){ .type = SG_IMAGETYPE_ARRAY, .width = (int)tex_width, .height = (int)tex_height, .num_slices = tex_slices, .pixel_format = SG_PIXELFORMAT_RGBA32F, .data.subimage[0][0] = { tex_data, tex_texels * sizeof(um_vec4) }, }); free(tex_data); return image; } void read_mesh(viewer_mesh *vmesh, ufbx_mesh *mesh) { // Count the number of needed parts and temporary buffers size_t max_parts = 0; size_t max_triangles = 0; // We need to render each material of the mesh in a separate part, so let's // count the number of parts and maximum number of triangles needed. for (size_t pi = 0; pi < mesh->materials.count; pi++) { ufbx_mesh_material *mesh_mat = &mesh->materials.data[pi]; if (mesh_mat->num_triangles == 0) continue; max_parts += 1; max_triangles = max_sz(max_triangles, mesh_mat->num_triangles); } // Temporary buffers size_t num_tri_indices = mesh->max_face_triangles * 3; uint32_t *tri_indices = alloc(uint32_t, num_tri_indices); mesh_vertex *vertices = alloc(mesh_vertex, max_triangles * 3); skin_vertex *skin_vertices = alloc(skin_vertex, max_triangles * 3); skin_vertex *mesh_skin_vertices = alloc(skin_vertex, mesh->num_vertices); uint32_t *indices = alloc(uint32_t, max_triangles * 3); // Result buffers viewer_mesh_part *parts = alloc(viewer_mesh_part, max_parts); size_t num_parts = 0; // In FBX files a single mesh can be instanced by multiple nodes. ufbx handles the connection // in two ways: (1) `ufbx_node.mesh/light/camera/etc` contains pointer to the data "attribute" // that node uses and (2) each element that can be connected to a node contains a list of // `ufbx_node*` instances eg. `ufbx_mesh.instances`. vmesh->num_instances = mesh->instances.count; vmesh->instance_node_indices = alloc(int32_t, mesh->instances.count); for (size_t i = 0; i < mesh->instances.count; i++) { vmesh->instance_node_indices[i] = (int32_t)mesh->instances.data[i]->typed_id; } // Create the vertex buffers size_t num_blend_shapes = 0; ufbx_blend_channel *blend_channels[MAX_BLEND_SHAPES]; size_t num_bones = 0; ufbx_skin_deformer *skin = NULL; if (mesh->skin_deformers.count > 0) { vmesh->skinned = true; // Having multiple skin deformers attached at once is exceedingly rare so we can just // pick the first one without having to worry too much about it. skin = mesh->skin_deformers.data[0]; // NOTE: A proper implementation would split meshes with too many bones to chunks but // for simplicity we're going to just pick the first `MAX_BONES` ones. for (size_t ci = 0; ci < skin->clusters.count; ci++) { ufbx_skin_cluster *cluster = skin->clusters.data[ci]; if (num_bones < MAX_BONES) { vmesh->bone_indices[num_bones] = (int32_t)cluster->bone_node->typed_id; vmesh->bone_matrices[num_bones] = ufbx_to_um_mat(cluster->geometry_to_bone); num_bones++; } } vmesh->num_bones = num_bones; // Pre-calculate the skinned vertex bones/weights for each vertex as they will probably // be shared by multiple indices. for (size_t vi = 0; vi < mesh->num_vertices; vi++) { size_t num_weights = 0; float total_weight = 0.0f; float weights[4] = { 0.0f }; uint8_t clusters[4] = { 0 }; // `ufbx_skin_vertex` contains the offset and number of weights that deform the vertex // in a descending weight order so we can pick the first N weights to use and get a // reasonable approximation of the skinning. ufbx_skin_vertex vertex_weights = skin->vertices.data[vi]; for (size_t wi = 0; wi < vertex_weights.num_weights; wi++) { if (num_weights >= 4) break; ufbx_skin_weight weight = skin->weights.data[vertex_weights.weight_begin + wi]; // Since we only support a fixed amount of bones up to `MAX_BONES` and we take the // first N ones we need to ignore weights with too high `cluster_index`. if (weight.cluster_index < MAX_BONES) { total_weight += (float)weight.weight; clusters[num_weights] = (uint8_t)weight.cluster_index; weights[num_weights] = (float)weight.weight; num_weights++; } } // Normalize and quantize the weights to 8 bits. We need to be a bit careful to make // sure the _quantized_ sum is normalized ie. all 8-bit values sum to 255. if (total_weight > 0.0f) { skin_vertex *skin_vert = &mesh_skin_vertices[vi]; uint32_t quantized_sum = 0; for (size_t i = 0; i < 4; i++) { uint8_t quantized_weight = (uint8_t)((float)weights[i] / total_weight * 255.0f); quantized_sum += quantized_weight; skin_vert->bone_index[i] = clusters[i]; skin_vert->bone_weight[i] = quantized_weight; } skin_vert->bone_weight[0] += 255 - quantized_sum; } } } // Fetch blend channels from all attached blend deformers. for (size_t di = 0; di < mesh->blend_deformers.count; di++) { ufbx_blend_deformer *deformer = mesh->blend_deformers.data[di]; for (size_t ci = 0; ci < deformer->channels.count; ci++) { ufbx_blend_channel *chan = deformer->channels.data[ci]; if (chan->keyframes.count == 0) continue; if (num_blend_shapes < MAX_BLEND_SHAPES) { blend_channels[num_blend_shapes] = chan; vmesh->blend_channel_indices[num_blend_shapes] = (int32_t)chan->typed_id; num_blend_shapes++; } } } if (num_blend_shapes > 0) { vmesh->blend_shape_image = pack_blend_channels_to_image(mesh, blend_channels, num_blend_shapes); vmesh->num_blend_shapes = num_blend_shapes; } // Our shader supports only a single material per draw call so we need to split the mesh // into parts by material. `ufbx_mesh_material` contains a handy compact list of faces // that use the material which we use here. for (size_t pi = 0; pi < mesh->materials.count; pi++) { ufbx_mesh_material *mesh_mat = &mesh->materials.data[pi]; if (mesh_mat->num_triangles == 0) continue; viewer_mesh_part *part = &parts[num_parts++]; size_t num_indices = 0; // First fetch all vertices into a flat non-indexed buffer, we also need to // triangulate the faces for (size_t fi = 0; fi < mesh_mat->num_faces; fi++) { ufbx_face face = mesh->faces.data[mesh_mat->face_indices.data[fi]]; size_t num_tris = ufbx_triangulate_face(tri_indices, num_tri_indices, mesh, face); ufbx_vec2 default_uv = { 0 }; // Iterate through every vertex of every triangle in the triangulated result for (size_t vi = 0; vi < num_tris * 3; vi++) { uint32_t ix = tri_indices[vi]; mesh_vertex *vert = &vertices[num_indices]; ufbx_vec3 pos = ufbx_get_vertex_vec3(&mesh->vertex_position, ix); ufbx_vec3 normal = ufbx_get_vertex_vec3(&mesh->vertex_normal, ix); ufbx_vec2 uv = mesh->vertex_uv.exists ? ufbx_get_vertex_vec2(&mesh->vertex_uv, ix) : default_uv; vert->position = ufbx_to_um_vec3(pos); vert->normal = um_normalize3(ufbx_to_um_vec3(normal)); vert->uv = ufbx_to_um_vec2(uv); vert->f_vertex_index = (float)mesh->vertex_indices.data[ix]; // The skinning vertex stream is pre-calculated above so we just need to // copy the right one by the vertex index. if (skin) { skin_vertices[num_indices] = mesh_skin_vertices[mesh->vertex_indices.data[ix]]; } num_indices++; } } ufbx_vertex_stream streams[2]; size_t num_streams = 1; streams[0].data = vertices; streams[0].vertex_size = sizeof(mesh_vertex); if (skin) { streams[1].data = skin_vertices; streams[1].vertex_size = sizeof(skin_vertex); num_streams = 2; } // Optimize the flat vertex buffer into an indexed one. `ufbx_generate_indices()` // compacts the vertex buffer and returns the number of used vertices. ufbx_error error; size_t num_vertices = ufbx_generate_indices(streams, num_streams, indices, num_indices, NULL, &error); if (error.type != UFBX_ERROR_NONE) { print_error(&error, "Failed to generate index buffer"); exit(1); } // To unify code we use `ufbx_load_opts.allow_null_material` to make ufbx create a // `ufbx_mesh_material` even if there are no materials, so it might be `NULL` here. part->num_indices = num_indices; if (mesh_mat->material) { part->material_index = (int32_t)mesh_mat->material->typed_id; } else { part->material_index = -1; } // Create the GPU buffers from the temporary `vertices` and `indices` arrays part->index_buffer = sg_make_buffer(&(sg_buffer_desc){ .size = num_indices * sizeof(uint32_t), .type = SG_BUFFERTYPE_INDEXBUFFER, .data = { indices, num_indices * sizeof(uint32_t) }, }); part->vertex_buffer = sg_make_buffer(&(sg_buffer_desc){ .size = num_vertices * sizeof(mesh_vertex), .type = SG_BUFFERTYPE_VERTEXBUFFER, .data = { vertices, num_vertices * sizeof(mesh_vertex) }, }); if (vmesh->skinned) { part->skin_buffer = sg_make_buffer(&(sg_buffer_desc){ .size = num_vertices * sizeof(skin_vertex), .type = SG_BUFFERTYPE_VERTEXBUFFER, .data = { skin_vertices, num_vertices * sizeof(skin_vertex) }, }); } } // Free the temporary buffers free(tri_indices); free(vertices); free(skin_vertices); free(mesh_skin_vertices); free(indices); // Compute bounds from the vertices vmesh->aabb_is_local = mesh->skinned_is_local; vmesh->aabb_min = um_dup3(+INFINITY); vmesh->aabb_max = um_dup3(-INFINITY); for (size_t i = 0; i < mesh->num_vertices; i++) { um_vec3 pos = ufbx_to_um_vec3(mesh->skinned_position.values.data[i]); vmesh->aabb_min = um_min3(vmesh->aabb_min, pos); vmesh->aabb_max = um_max3(vmesh->aabb_max, pos); } vmesh->parts = parts; vmesh->num_parts = num_parts; } void read_blend_channel(viewer_blend_channel *vchan, ufbx_blend_channel *chan) { vchan->weight = (float)chan->weight; } void read_node_anim(viewer_anim *va, viewer_node_anim *vna, ufbx_anim_stack *stack, ufbx_node *node) { vna->rot = alloc(um_quat, va->num_frames); vna->pos = alloc(um_vec3, va->num_frames); vna->scale = alloc(um_vec3, va->num_frames); bool const_rot = true, const_pos = true, const_scale = true; // Sample the node's transform evenly for the whole animation stack duration for (size_t i = 0; i < va->num_frames; i++) { double time = stack->time_begin + (double)i / va->framerate; ufbx_transform transform = ufbx_evaluate_transform(&stack->anim, node, time); vna->rot[i] = ufbx_to_um_quat(transform.rotation); vna->pos[i] = ufbx_to_um_vec3(transform.translation); vna->scale[i] = ufbx_to_um_vec3(transform.scale); if (i > 0) { // Negated quaternions are equivalent, but interpolating between ones of different // polarity takes a the longer path, so flip the quaternion if necessary. if (um_quat_dot(vna->rot[i], vna->rot[i - 1]) < 0.0f) { vna->rot[i] = um_quat_neg(vna->rot[i]); } // Keep track of which channels are constant for the whole animation as an optimization if (!um_quat_equal(vna->rot[i - 1], vna->rot[i])) const_rot = false; if (!um_equal3(vna->pos[i - 1], vna->pos[i])) const_pos = false; if (!um_equal3(vna->scale[i - 1], vna->scale[i])) const_scale = false; } } if (const_rot) { vna->const_rot = vna->rot[0]; free(vna->rot); vna->rot = NULL; } if (const_pos) { vna->const_pos = vna->pos[0]; free(vna->pos); vna->pos = NULL; } if (const_scale) { vna->const_scale = vna->scale[0]; free(vna->scale); vna->scale = NULL; } } void read_blend_channel_anim(viewer_anim *va, viewer_blend_channel_anim *vbca, ufbx_anim_stack *stack, ufbx_blend_channel *chan) { vbca->weight = alloc(float, va->num_frames); bool const_weight = true; // Sample the blend weight evenly for the whole animation stack duration for (size_t i = 0; i < va->num_frames; i++) { double time = stack->time_begin + (double)i / va->framerate; ufbx_real weight = ufbx_evaluate_blend_weight(&stack->anim, chan, time); vbca->weight[i] = (float)weight; // Keep track of which channels are constant for the whole animation as an optimization if (i > 0) { if (vbca->weight[i - 1] != vbca->weight[i]) const_weight = false; } } if (const_weight) { vbca->const_weight = vbca->weight[0]; free(vbca->weight); vbca->weight = NULL; } } void read_anim_stack(viewer_anim *va, ufbx_anim_stack *stack, ufbx_scene *scene) { const float target_framerate = 30.0f; const size_t max_frames = 4096; // Sample the animation evenly at `target_framerate` if possible while limiting the maximum // number of frames to `max_frames` by potentially dropping FPS. float duration = (float)stack->time_end - (float)stack->time_begin; size_t num_frames = clamp_sz((size_t)(duration * target_framerate), 2, max_frames); float framerate = (float)(num_frames - 1) / duration; va->name = alloc_dup(char, stack->name.length + 1, stack->name.data); va->time_begin = (float)stack->time_begin; va->time_end = (float)stack->time_end; va->framerate = framerate; va->num_frames = num_frames; // Sample the animations of all nodes and blend channels in the stack va->nodes = alloc(viewer_node_anim, scene->nodes.count); for (size_t i = 0; i < scene->nodes.count; i++) { ufbx_node *node = scene->nodes.data[i]; read_node_anim(va, &va->nodes[i], stack, node); } va->blend_channels = alloc(viewer_blend_channel_anim, scene->blend_channels.count); for (size_t i = 0; i < scene->blend_channels.count; i++) { ufbx_blend_channel *chan = scene->blend_channels.data[i]; read_blend_channel_anim(va, &va->blend_channels[i], stack, chan); } } void read_scene(viewer_scene *vs, ufbx_scene *scene) { vs->num_nodes = scene->nodes.count; vs->nodes = alloc(viewer_node, vs->num_nodes); for (size_t i = 0; i < vs->num_nodes; i++) { read_node(&vs->nodes[i], scene->nodes.data[i]); } vs->num_meshes = scene->meshes.count; vs->meshes = alloc(viewer_mesh, vs->num_meshes); for (size_t i = 0; i < vs->num_meshes; i++) { read_mesh(&vs->meshes[i], scene->meshes.data[i]); } vs->num_blend_channels = scene->blend_channels.count; vs->blend_channels = alloc(viewer_blend_channel, vs->num_blend_channels); for (size_t i = 0; i < vs->num_blend_channels; i++) { read_blend_channel(&vs->blend_channels[i], scene->blend_channels.data[i]); } vs->num_animations = scene->anim_stacks.count; vs->animations = alloc(viewer_anim, vs->num_animations); for (size_t i = 0; i < vs->num_animations; i++) { read_anim_stack(&vs->animations[i], scene->anim_stacks.data[i], scene); } } void update_animation(viewer_scene *vs, viewer_anim *va, float time) { float frame_time = (time - va->time_begin) * va->framerate; size_t f0 = min_sz((size_t)frame_time + 0, va->num_frames - 1); size_t f1 = min_sz((size_t)frame_time + 1, va->num_frames - 1); float t = um_min(frame_time - (float)f0, 1.0f); for (size_t i = 0; i < vs->num_nodes; i++) { viewer_node *vn = &vs->nodes[i]; viewer_node_anim *vna = &va->nodes[i]; um_quat rot = vna->rot ? um_quat_lerp(vna->rot[f0], vna->rot[f1], t) : vna->const_rot; um_vec3 pos = vna->pos ? um_lerp3(vna->pos[f0], vna->pos[f1], t) : vna->const_pos; um_vec3 scale = vna->scale ? um_lerp3(vna->scale[f0], vna->scale[f1], t) : vna->const_scale; vn->node_to_parent = um_mat_trs(pos, rot, scale); } for (size_t i = 0; i < vs->num_blend_channels; i++) { viewer_blend_channel *vbc = &vs->blend_channels[i]; viewer_blend_channel_anim *vbca = &va->blend_channels[i]; vbc->weight = vbca->weight ? um_lerp(vbca->weight[f0], vbca->weight[f1], t) : vbca->const_weight; } } void update_hierarchy(viewer_scene *vs) { for (size_t i = 0; i < vs->num_nodes; i++) { viewer_node *vn = &vs->nodes[i]; // ufbx stores nodes in order where parent nodes always precede child nodes so we can // evaluate the transform hierarchy with a flat loop. if (vn->parent_index >= 0) { vn->node_to_world = um_mat_mul(vs->nodes[vn->parent_index].node_to_world, vn->node_to_parent); } else { vn->node_to_world = vn->node_to_parent; } vn->geometry_to_world = um_mat_mul(vn->node_to_world, vn->geometry_to_node); vn->normal_to_world = um_mat_transpose(um_mat_inverse(vn->geometry_to_world)); } } void init_pipelines(viewer *view) { sg_backend backend = sg_query_backend(); view->shader_mesh_lit_static = sg_make_shader(static_lit_shader_desc(backend)); view->pipe_mesh_lit_static = sg_make_pipeline(&(sg_pipeline_desc){ .shader = view->shader_mesh_lit_static, .layout = mesh_vertex_layout, .index_type = SG_INDEXTYPE_UINT32, .face_winding = SG_FACEWINDING_CCW, .cull_mode = SG_CULLMODE_BACK, .depth = { .compare = SG_COMPAREFUNC_LESS_EQUAL, .write_enabled = true, }, }); view->shader_mesh_lit_skinned = sg_make_shader(skinned_lit_shader_desc(backend)); view->pipe_mesh_lit_skinned = sg_make_pipeline(&(sg_pipeline_desc){ .shader = view->shader_mesh_lit_skinned, .layout = skinned_mesh_vertex_layout, .index_type = SG_INDEXTYPE_UINT32, .face_winding = SG_FACEWINDING_CCW, .cull_mode = SG_CULLMODE_BACK, .depth = { .compare = SG_COMPAREFUNC_LESS_EQUAL, .write_enabled = true, }, }); um_vec4 empty_blend_shape_data = { 0 }; view->empty_blend_shape_image = sg_make_image(&(sg_image_desc){ .type = SG_IMAGETYPE_ARRAY, .width = 1, .height = 1, .num_slices = 1, .pixel_format = SG_PIXELFORMAT_RGBA32F, .data.subimage[0][0] = SG_RANGE(empty_blend_shape_data), }); } void load_scene(viewer_scene *vs, const char *filename) { ufbx_load_opts opts = { .load_external_files = true, .allow_null_material = true, .generate_missing_normals = true, // NOTE: We use this _only_ for computing the bounds of the scene! // The viewer contains a proper implementation of skinning as well. // You probably don't need this. .evaluate_skinning = true, .target_axes = { .right = UFBX_COORDINATE_AXIS_POSITIVE_X, .up = UFBX_COORDINATE_AXIS_POSITIVE_Y, .front = UFBX_COORDINATE_AXIS_POSITIVE_Z, }, .target_unit_meters = 1.0f, }; ufbx_error error; ufbx_scene *scene = ufbx_load_file(filename, &opts, &error); if (!scene) { print_error(&error, "Failed to load scene"); exit(1); } read_scene(vs, scene); // Compute the world-space bounding box vs->aabb_min = um_dup3(+INFINITY); vs->aabb_max = um_dup3(-INFINITY); for (size_t mesh_ix = 0; mesh_ix < vs->num_meshes; mesh_ix++) { viewer_mesh *mesh = &vs->meshes[mesh_ix]; um_vec3 aabb_origin = um_mul3(um_add3(mesh->aabb_max, mesh->aabb_min), 0.5f); um_vec3 aabb_extent = um_mul3(um_sub3(mesh->aabb_max, mesh->aabb_min), 0.5f); if (mesh->aabb_is_local) { for (size_t inst_ix = 0; inst_ix < mesh->num_instances; inst_ix++) { viewer_node *node = &vs->nodes[mesh->instance_node_indices[inst_ix]]; um_vec3 world_origin = um_transform_point(&node->geometry_to_world, aabb_origin); um_vec3 world_extent = um_transform_extent(&node->geometry_to_world, aabb_extent); vs->aabb_min = um_min3(vs->aabb_min, um_sub3(world_origin, world_extent)); vs->aabb_max = um_max3(vs->aabb_max, um_add3(world_origin, world_extent)); } } else { vs->aabb_min = um_min3(vs->aabb_min, mesh->aabb_min); vs->aabb_max = um_max3(vs->aabb_max, mesh->aabb_max); } } ufbx_free_scene(scene); } bool backend_uses_d3d_perspective(sg_backend backend) { switch (backend) { case SG_BACKEND_GLCORE33: return false; case SG_BACKEND_GLES2: return false; case SG_BACKEND_GLES3: return false; case SG_BACKEND_D3D11: return true; case SG_BACKEND_METAL_IOS: return true; case SG_BACKEND_METAL_MACOS: return true; case SG_BACKEND_METAL_SIMULATOR: return true; case SG_BACKEND_WGPU: return true; case SG_BACKEND_DUMMY: return false; default: assert(0 && "Unhandled backend"); return false; } } void update_camera(viewer *view) { viewer_scene *vs = &view->scene; um_vec3 aabb_origin = um_mul3(um_add3(vs->aabb_max, vs->aabb_min), 0.5f); um_vec3 aabb_extent = um_mul3(um_sub3(vs->aabb_max, vs->aabb_min), 0.5f); float distance = 2.5f * powf(2.0f, view->camera_distance) * um_max(um_max(aabb_extent.x, aabb_extent.y), aabb_extent.z); um_quat camera_rot = um_quat_mul( um_quat_axis_angle(um_v3(0,1,0), view->camera_yaw * UM_DEG_TO_RAD), um_quat_axis_angle(um_v3(1,0,0), view->camera_pitch * UM_DEG_TO_RAD)); um_vec3 camera_target = aabb_origin; um_vec3 camera_direction = um_quat_rotate(camera_rot, um_v3(0,0,1)); um_vec3 camera_pos = um_add3(camera_target, um_mul3(camera_direction, distance)); view->world_to_view = um_mat_look_at(camera_pos, camera_target, um_v3(0,1,0)); float fov = 50.0f * UM_DEG_TO_RAD; float aspect = (float)sapp_width() / (float)sapp_height(); float near_plane = um_min(distance * 0.001f, 0.1f); float far_plane = um_max(distance * 2.0f, 100.0f); if (backend_uses_d3d_perspective(sg_query_backend())) { view->view_to_clip = um_mat_perspective_d3d(fov, aspect, near_plane, far_plane); } else { view->view_to_clip = um_mat_perspective_gl(fov, aspect, near_plane, far_plane); } view->world_to_clip = um_mat_mul(view->view_to_clip, view->world_to_view); } void draw_mesh(viewer *view, viewer_node *node, viewer_mesh *mesh) { sg_image blend_shapes = mesh->num_blend_shapes > 0 ? mesh->blend_shape_image : view->empty_blend_shape_image; if (mesh->skinned) { sg_apply_pipeline(view->pipe_mesh_lit_skinned); skin_vertex_ubo_t skin_ubo = { 0 }; for (size_t i = 0; i < mesh->num_bones; i++) { viewer_node *bone = &view->scene.nodes[mesh->bone_indices[i]]; skin_ubo.bones[i] = um_mat_mul(bone->node_to_world, mesh->bone_matrices[i]); } sg_apply_uniforms(SG_SHADERSTAGE_VS, SLOT_skin_vertex_ubo, SG_RANGE_REF(skin_ubo)); } else { sg_apply_pipeline(view->pipe_mesh_lit_static); } mesh_vertex_ubo_t mesh_ubo = { .geometry_to_world = node->geometry_to_world, .normal_to_world = node->normal_to_world, .world_to_clip = view->world_to_clip, .f_num_blend_shapes = (float)mesh->num_blend_shapes, }; // sokol-shdc only supports vec4 arrays so reinterpret this `um_vec4` array as `float` float *blend_weights = (float*)mesh_ubo.blend_weights; for (size_t i = 0; i < mesh->num_blend_shapes; i++) { blend_weights[i] = view->scene.blend_channels[mesh->blend_channel_indices[i]].weight; } sg_apply_uniforms(SG_SHADERSTAGE_VS, SLOT_mesh_vertex_ubo, SG_RANGE_REF(mesh_ubo)); for (size_t pi = 0; pi < mesh->num_parts; pi++) { viewer_mesh_part *part = &mesh->parts[pi]; sg_bindings binds = { .vertex_buffers[0] = part->vertex_buffer, .vertex_buffers[1] = part->skin_buffer, .index_buffer = part->index_buffer, .vs_images[SLOT_blend_shapes] = blend_shapes, }; sg_apply_bindings(&binds); sg_draw(0, (int)part->num_indices, 1); } } void draw_scene(viewer *view) { for (size_t mi = 0; mi < view->scene.num_meshes; mi++) { viewer_mesh *mesh = &view->scene.meshes[mi]; for (size_t ni = 0; ni < mesh->num_instances; ni++) { viewer_node *node = &view->scene.nodes[mesh->instance_node_indices[ni]]; draw_mesh(view, node, mesh); } } } viewer g_viewer; const char *g_filename; void init(void) { sg_setup(&(sg_desc){ .context = sapp_sgcontext(), .buffer_pool_size = 4096, .image_pool_size = 4096, }); stm_setup(); init_pipelines(&g_viewer); load_scene(&g_viewer.scene, g_filename); } void onevent(const sapp_event *e) { viewer *view = &g_viewer; switch (e->type) { case SAPP_EVENTTYPE_MOUSE_DOWN: view->mouse_buttons |= 1u << (uint32_t)e->mouse_button; break; case SAPP_EVENTTYPE_MOUSE_UP: view->mouse_buttons &= ~(1u << (uint32_t)e->mouse_button); break; case SAPP_EVENTTYPE_UNFOCUSED: view->mouse_buttons = 0; break; case SAPP_EVENTTYPE_MOUSE_MOVE: if (view->mouse_buttons & 1) { float scale = um_min((float)sapp_width(), (float)sapp_height()); view->camera_yaw -= e->mouse_dx / scale * 180.0f; view->camera_pitch -= e->mouse_dy / scale * 180.0f; view->camera_pitch = um_clamp(view->camera_pitch, -89.0f, 89.0f); } break; case SAPP_EVENTTYPE_MOUSE_SCROLL: view->camera_distance += e->scroll_y * -0.02f; view->camera_distance = um_clamp(view->camera_distance, -5.0f, 5.0f); break; default: break; } } void frame(void) { static uint64_t last_time; float dt = (float)stm_sec(stm_laptime(&last_time)); dt = um_min(dt, 0.1f); viewer_anim *anim = g_viewer.scene.num_animations > 0 ? &g_viewer.scene.animations[0] : NULL; if (anim) { g_viewer.anim_time += dt; if (g_viewer.anim_time >= anim->time_end) { g_viewer.anim_time -= anim->time_end - anim->time_begin; } update_animation(&g_viewer.scene, anim, g_viewer.anim_time); } update_camera(&g_viewer); update_hierarchy(&g_viewer.scene); sg_pass_action action = { .colors[0] = { .action = SG_ACTION_CLEAR, .value = { 0.1f, 0.1f, 0.2f }, }, }; sg_begin_default_pass(&action, sapp_width(), sapp_height()); draw_scene(&g_viewer); sg_end_pass(); sg_commit(); } void cleanup(void) { sg_shutdown(); } sapp_desc sokol_main(int argc, char* argv[]) { if (argc <= 1) { fprintf(stderr, "Usage: viewer file.fbx\n"); exit(1); } g_filename = argv[1]; return (sapp_desc){ .init_cb = &init, .event_cb = &onevent, .frame_cb = &frame, .cleanup_cb = &cleanup, .width = 800, .height = 600, .sample_count = 4, .window_title = "ufbx viewer", }; }